
Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 301

TRACKING MOBILE TARGETS USING SENSOR NETWORKS

Ahmed M. Khedr* and Walid Osamy
Department of Mathematics, Faculty of Science

Zagazig University, Zagazig, Egypt

 :الخلاصـة

مزودة بوصѧلة شبكة المستشعرات اللاسلكية على العديد من الوحدات ذات الطاقة المنخفضة و ال تحتوي
وقѧد تѧم . فѧي العديѧد مѧن التطبيقѧات مهاااسѧتخد ن تلك المستشعرات يمكن إ للاتصال فيما بينها ، حيث لكيةلاس

لѧى إ و تقѧسيمها بѧشكل مѧا في هذا البحث توزيع المستشعرات بشكل عشوائي علѧى المنطقѧة المѧراد مراقبتهѧا
 من تلك المستѧشعرات علѧى بيانѧات مكانيѧة مجموعات لتعمل آقواعد بيانات متفرقة، حيث تحتوي آل واحدة

م بنѧاء خѧواريزم يعمѧل علѧى توجيѧه و إدارة الѧشبكة لتتبѧع تѧ بعѧد ذلѧك و. متحرك داخѧل المنطقѧة الجسم العن
 .مسار حرآة أي جسم يمر خلال الشبكة

 يتمثل الهدف الأساسي من البحث فѧي جعѧل آѧل مستѧشعر مѧن المستѧشعرات يقѧوم باسѧتخلاص البيانѧات
 يتم اآتشاف الشكل العام لمسار حرآة الجѧسم سѧواء و من تلك البيانات المستخلصة محلياً ،لالة محلياً ذات الد

ѧѧه خطيѧѧسار حرآتѧѧان مѧѧل اًآѧѧين آѧѧة بѧѧائل المتبادلѧѧدد الرسѧѧون عѧѧار أن يكѧѧي الاعتبѧѧذ فѧѧع الأخѧѧي مѧѧر خطѧѧأو غي
 . بشكل عام داخل الشبكة و ذلك لتوفير الطاقة المستهلكة داخل آل مستشعر أو،مستشعر و آخر أقل ما يمكن

 . بعضاًالمستشعرات و بعضهاعدد الرسائل المتبادلة بين الخواريزم بناء على تحليلو في النهاية تم

* To whom correspondence should be addressed
E-mail: amkhedr@yahoo.com

Paper Received 1 March 2005; Revised 23 July 2006; Accepted 8 November 2006

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 302

ABSTRACT

Wireless sensor networks consist of a large number of low power devices
equipped with RF links for communication that have numerous military, civil, and
environmental monitoring applications. The energy constraints due to limited battery
power present several design challenges. We have considered a random sensor
network , where the entire network of these sensors acts as a set of distributed
datasets. Each of these sensors has its local temporal dataset along with spatial data
and the geographical coordinates of a given object or target. In this paper, a cluster
based algorithm is proposed for managing and coordinating a sensor network for
tracking moving targets by mining global temporal patterns from these datasets and
results in the discovery of nonlinear trajectories of moving objects under supervision.
The main objective here is to perform in-network aggregation between the data
contained in the various datasets to discover global spatio-temporal patterns; the main
constraint is that there should be minimal communication among the participating
nodes. We present the algorithm and analyze it in terms of the communication costs.

Key words: wireless sensor networks, in-network aggregation, spatio-temporal
patterns, distributed datasets, data mining.

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 303

TRACKING MOBILE TARGETS USING SENSOR NETWORKS

1. INTRODUCTION

Sensor networks are related to wireless ad hoc networks, which are self-organizing systems consisting of hosts that do not
rely on the presence of any fixed network infrastructure. After deployment, the wireless sensors self-configure to gather
acoustic, magnetic, or seismic information and send the information to a cluster head or a base station; here end-users can
retrieve the data. Important messages (e.g., an intruder detected by a sensor) can be broadcast to all nodes. Sensor
networks are characterized by sheer numbers of nodes, data-centric applications, and constrained resources (bandwidth and
energy).

Sensor networks are an important area of applications, where each sensor collects data in its vicinity, and within its
interest, to determine global patterns in a geographically distributed collection of sensors. In this paper, we present a
methodology for mining geographically distributed datasets for spatio–temporal patterns.

In our work, we assume a cluster based architecture for the sensor nodes that are randomly spread in a region to be
supervised. They are capable of capturing and storing data. Our main aim is to perform data mining using our algorithm
on the data stored in these sensor nodes. Data mining in sensor networks has a host of real time applications that can yield
very useful, and profitable, results. For example, the following questions can be answered by implementing Data Mining
techniques on the vast data available to us from a set of distributed databases in a state. Is there a pattern of increasing
crime rate in the different counties of the state? How is this pattern spreading over the state and in which direction?
Which were the most affected areas in the state by Hurricane Isabel? Which areas are most likely to be affected by a
power outage?

For the purpose of our paper, we refer to sensor networks as a set of geographically distributed stand alone sensors,
that are spread over a region, and are capable of sensing predefined parameters such as temperature, motion, and geographic
coordinates of objects. Every sensor is capable of collecting information in its vicinity and exchanging it to its Cluster Head.
We assume that the sensors we work with are capable of running self-decomposable algorithms that extract useful
information from the data stored in the sensors. Upon collection of data, the main interest to us is to determine global
patterns from these sensors. Mobility of the sensors is dependent on the application and its use. We have restricted our
work in this paper to stationary sensors.

2. RELATED RESEARCH

There are many technical challenges associated with sensor networks, such as self-organizing algorithms, energy-efficient
routing protocols, data analysis/mining technology and network lifetime improvements [1–4]. The source of energy for
a wireless sensor is most often an attached battery. The power in sensor nodes can be used up simply by
computations and transmissions. Furthermore, it is infeasible to replace thousands of nodes in hostile or remote
regions. Therefore, conserving energy so as to prolong the network lifetime is becoming one of the key challenges for
such power constrained networks. Recent research has addressed this topic, for example [5, 6].

One of the most important areas where the advantages of sensor networks can be exploited is for tracking mobile targets.
Scenarios where such network may be deployed can be both military (tracking enemy vehicles, detecting illegal border
crossings), and civilian (tracking the movement of wild animals in wildlife preserves). Typically, for accuracy, two or more
sensors are simultaneously required for tracking a single target, leading to coordination issues. Additionally, given the
requirements to minimize the power consumption due to communication or other factors, we would like to select the bare
essential number of sensors dedicated for the task, while all other sensors should preferably be in the hibernation or off state.
In order to simultaneously satisfy such requirements as power saving and improving overall efficiency, we need large scale
coordination and other management operations. These tasks become even more challenging when one considers the
random mobility of the targets and the resulting need to coordinate the assignment of the sensors best suited for
tracking the target as a function of time. In this paper, we propose an algorithm for managing and coordinating a
sensor network for tracking moving targets.

The problem of tracking targets with sensor networks has received attention from various angles. In [20],
Galstyan et al. proposed a distributed online algorithm in which sensor nodes use geometric constraints induced by both
radio connectivity and sensing to reduce the uncertainty of their position. In that algorithm, sensor nodes use online
observation of a moving target to simultaneously improve both the moving target and their own positions. A small
fraction of reference nodes are pre-planned or GPS placements into the network. In [21], Kirill et al. presented a two-
level cooperative tracking algorithm using binary-detection sensors to track the object with more precision and accuracy.

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 304

In the first level phase, the local target position estimation is computed. Initially, the target is estimated to equal to the
position of the sensor node. As more information from the other sensor nodes is available, the estimated position is
recomputed as a weighted average of the sensor locations. Sensor nodes that lie closer to the path of the target receive
more weight. These estimations are then aggregated to compute the path of the object, which produces a more precise
estimate for the target location. In the second level, a piecewise linear approximation of the path is computed using a
line-fitting algorithm on the positions obtained in the first level. In [24], Fang et al. proposed a collaborative
computation approach where they count the number of targets in the sensing terrain. They equate the computation of
the number of targets to the computation of leader nodes in the network with maximum signal strength. They
aggregate this information to get a final report of the total count. The work described in [22, 23, 25] provides similar
distributed collaborative algorithms for target localization, classification, and tracking.

The topographically addressed sensor nodes are similar to the way we have dealt with the placement of nodes in our
work [7]. A distributed algorithm, which estimates the gradient of an environmental scalar variable such as temperature,
intensity of light, atmospheric pressure, etc. using a random sensor network, is discussed by [8].

The work in [9, 10] has examined ways to provide in-network aggregation for the internet in a traditional way. The
authors used the concepts of routers and centralized node. But in the practical world of sensors and other similar devices, it
is very expensive for a central node to communicate with all other nodes in the system. Hence a hop by hop network is built
where each node can talk with its neighboring nodes [11]. In this aspect, the central idea of our paper is similar to [11], but
we do not have the concept of router or centralized node. We assume that our algorithm would be primarily used for
applications where the bandwidth is limited and the communication costs between nodes are very high, but the
computation cost at the local nodes is very less.

In [12], an algorithm has been designed to carry out in-network processing for data aggregation using a dense
deployment of nodes. The main aim of our paper is similar to [12], where our proposed algorithm is used to compute data
aggregations over a system of nodes by using in-network processing of the data stored in the nodes as in [12] but involving a
temporal attribute, and also, the adopted methodology is different in that they assume two-way flow of data between
nodes.

In [13] an algorithm is designed that exploits the characteristics of ad hoc wireless sensor networks to discover position
information of the sensor nodes even when they have been sprinkled all over the earth. Our work differs from [13], in that
the sensor nodes in our work do not have to know the global knowledge of the topology of their physical locations, but they
do need to know their global coordinates to start the in-network data analysis, and aggregation.

Knowledge discovery and data mining are emerging fields, whose goals are to make sense out of large amounts of data
collected, by discovering hitherto unknown patterns. Many interesting and efficient data mining algorithms have been
proposed [14–16]. These database-oriented mining algorithms can be classified into two categories: concept generalization-
based discovery and discovery at the primitive concept level. Generalization of attribute values (or concepts) is the main
idea in the former, whereas the latter discovers strong regularities or association rules from databases without concept
generalization.

There has not been much work in the area of mining temporal concepts. Most of the existing work is based on
time series analysis of temporal sequences. Reference [17] discusses some of the challenges posed by the temporal data. There
has been some work done in [11] in the field of parallel algorithms for temporal aggregation. In this paper, we discuss an
algorithm which discovers temporal patterns among distributed datasets.

The rest of the paper is organized as follows: In the following section, we give an introduction to the basic concepts. A
step by step outline of our algorithm is described in Section 4. We describe the trajectory of tracking in Section 5. In
Section 6, we give an example scenario. Section 7 analyzes the complexity of our algorithm. In Section 8, we present our
simulation results. In Section 9, we discuss the practical matter. We conclude our work in Section 10.

3. PROBLEM FORMULATION TERMS

We consider sensor nodes that randomly spread across a geographical area and collaborate among themselves to establish a
random sensor network. Also we assume a cluster based architecture for the sensor network. Each cluster has only one leader
called Cluster Head (CH) and some nodes that can communicate with other neighbor clusters called Gateways (GW), and the
remaining nodes in the cluster called Cluster Members (CM). Our development is in the context of temporal data being
recorded by a number of sensors. We outline some of the ideas used in the development of our algorithm. The dataset used in
our algorithm consists of the x and y coordinates of the points at which the light event is sensed, along with the timestamp

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 305

[26]. We refer to the term point to a combined set of information about a moving object which includes x, y coordinates and
the timestamp. Each sensor may have a number of such data points recorded in its local memory.

3.1. Local Hypothesis (LH)

Forming of Local Hypotheses is the first step of our algorithm that is implemented in each of the sensor nodes. A
Local Hypothesis is a set of three or more points, satisfying the following criteria.

1. Taking sets of three points or more, they should lie on the same line in the same direction;

2. The points in the LH should be in ascending timestamp manner.

The angle between two points p1, and p2 can be computed by the following equation:

() () ()
() ()⎥⎦

⎤
⎢
⎣

⎡
−
−

=
12

12
21 arctan,

pXcordpXcord
pYcordpYcord

ppAngle (1)

We define the points p1, p2, p3, and p4 to be lying in the same direction if the angle between any pair of points is the same
as the angle between the other pair, e.g., in Figure 1, the points p1, p2, p3, and p4 lie in the same direction. Hence they make
a Local Hypothesis as is indicated by a rectangular box in Figure 1.

LH is considered as a straight line that starts at the first point (FP), and ends with the last point (LP), with a specific
angle of slope. For that, we consider the structure of LH as: LH = (FP, LP, angle). In Figure 1, LH1 has p1 as the first
point , and p4 as the last point .

3.2. Global Hypothesis (GH)

Forming GH is the second step of our algorithm. A GH is considered as a structure that contains set of LHs. A GH
is formed when LHs from different sensor nodes are merged in ascending manner according to their timestamps. We
keep track of GH direction by updating the PointChangeList which includes the points at which the GH changes its
direction.

Figure 1. Example of LHs at one node Figure 2. A GH Example at a cluster head

The GH starts at the first point of the first attached LH and ends at the last point of the last attached LH. We define
the length of GH to be the number of LHs considered during forming GH. We define the GH structure as GH = (Start
Point (SP), <PointChangeList >, End Point (EP)). In Figure 2, the solid black line is the GH, and the small boxes
represent the points at which the GH changes its direction.

4. ALGORITHMS OUTLINES

There are two stages of our algorithm: the first stage will be executed at every sensor node in the system to generate
the LHs (Local Computation), while the second stage will be executed at every cluster head that receives LHs from its
cluster members to generate the GH (Global Computation).

4.1. Algorithm Assumption

We assume a cluster-based architecture for the sensor network and the choice was motivated by the need to ensure the
sensor network's scalability and energy efficiency. A number of clustering algorithms have been proposed in the literature
[18, 19]. In this paper, we are not concerned with details of clustering mechanisms. Also, we assume that the cluster head
knows the sensor identities and locations for all sensors belonging to its cluster. The assumptions about the sensor network

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 306

are the following:

1. All sensors have the same characteristics;

2. Sensors are randomly distributed across the whole sensing area;

3. All sensors have the capability to capture the information of any moving object in their sensing range. The
information includes the approximate x, y coordinates, and the timestamp.

No specific assumptions are made about the movement pattern of the target. However, we assume that the targets
originate outside the sensing region and then move inside. Also, the aggregated data are reported to the end user.

4.2. Local Computation

Each node in the system collects all the required information about the moving target in its range, and form the LHs by
executing the following procedure.

1. Output: Set of Local Hypotheses
2. Each node in the system, initially reads the data (say N points) from its database, and sorts it in ascending order

according to their timestamps.
3. k = 1, i = 1 // k is the current LH number and i = 1 is the current point number
4. while(i < N)

(a) Find the angles Angle1 = angle(pi, pi+1) and Angle2 = angle(pi+1, pi+2)
(b) if (Angle1 = Angle2)

 i. LHk.FP= pi ; LHk.LP=pi+2 ;
 LHk .angle = Angle2. ii. for j =i+3 to N
 A. if angle(pj−1, pj) = angle(pi+1, pi+2)
 • LHk.LP = pj ;
 B. else

• i =j, k=k+1
• GOTO Step (4)

 C. End if
iii. End for

 (c) else i =i +1
 (d) End if

5. End while
6. End Local Computations

Initially, each node arranges the recorded points in ascending manner according to their timestamps line 2. Take the
first three points and find the angle between the first and the second point, and the angle between the second and the third
point (line 4 (a)). In line 4 (b), if the computed angles in 4 (a) are the same, the LH is established by setting up the first
point as the FP of the LH, the third point as the LP of the LH and LH angle will be the angle between the second
and the third point. For further points that may be added to the current LH, we take the next point pj and determine its
angle with the last added point to the current LH. If (pj-1, pj) angle equal to the LH angle, we update LH.LP to pj (line 4
(A)). In line 4 B, if the first three points are not at the same angle, we skip the first point of the three points, and start from
the second one (line 4 (c)).

4.3. Global Computation

In the second stage of our algorithm, every cluster member sends its LHs to its cluster head to form the GH
component, then each cluster head will find the next suitable cluster head to send its GH component for merging. The
formed GH after merging includes the main points of the trajectory along current cluster head and its previous one in the
network. Also, in this stage CH communicates only with cluster heads that are in the direction of the event through the
selected GW. The length of the GH component increased from CH to next CH till we obtain the summarized GH that
contains all the useful points about the moving object trajectory. Finally, the end user will receive the summarized GH

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 307

that includes the start point, the end point, and the main points of the object trajectory through the network.

In order to describe Global Computation step, we first introduce the notation of "Event". The Event occurs at CH, if
it receives any message contains an LH from its cluster members. The default status for each CH is no Event at CH
(Event= false).

We now describe how Global Computation step is executed at every cluster head CHi. After receiving the first LH,
the Event is set to true then CHi waits a period of time to receive any more LH messages. After the time has expired a
sequence of tasks in the following order are carried out at every cluster head:

• Execute GenerateGH procedure to generate your GH component,

• Search for the GW which has minimum distance from the last point in your GH component,

• If the received message contains GH component , merge the received GH into your GH,

• Report the GH components to the next CH (CHi+1), which has true Event or to the end user,

• Reply to query message that asks for Event status.

After receiving LHs, CHi executes the GenerateGH procedure to generate its GH component, and CHi searches in its
database for the GW which has minimum distance from the last point in its GH component. Then CHi communicates
with the selected GW, and sends through it a query asking the next CH (CHi+1) for Event and waits for response. If no
response back or no Event message, CHi marks the selected GW as already selected before and repeats searching for GW.
If CHi+1 responses back that Event occurs in its direction, CHi will send its GH component to CHi+1 through the selected
GW. However, if CHi could not find any GW (i.e. the object moves out from the network), in this case, CHi has
responsibility to report the GH to the end user.

If CHi receives a message from different CH contains the GH component, CHi will merge the received GH with its
GH component as follows: Initially CHi checks if GHi−1.EP timestamp (the received GH component) is less than GHi.EP
timestamp (the current GH component of CHi), the new GHi starts at the start point of GHi−1 (GHi−1.SP) and ends at
the end point of GHi (GHi.EP), and the new PointChangeList (GHi.PointChangeList) will be the union of the two sets
GHi−1.PointChangeList, and GHi.PointChangeList. Finally, if CHi receives any query message, it will response back
by yes if there is Event otherwise, by no.

4.3.1. Procedure GenerateGH

This procedure generates GH from a list of LHs.

1. Input: List of LHs

2. Output: GH

3. Arrange the received LHs in ascending manner according to their timestamps.

4. set i = 1, // i is the current LH number

5. GH.PointChangeList = Φ

6. GH.SP=LH1.FP,

7. angle = LH1.angle.

8. for every LHi in the arranged LHs list (i > 1)

9. if (angle ≠ LHi.angle)

10. GH.PointChangeList = ∪ >< angleLHFPLHangeList GH.PointCh ii .,.

11. angle = LHi.angle

12. end if

13. end for

14. GH.EP = LHi.LP

15. End GenerateGH procedure

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 308

In line 3, the LHs will be arranged in ascending manner according to their timestamps. The PointChangeList,
the start point (GH.SP), and the angle of GH will be initialized to Φ, the first point of LH1, and LH1.angle
respectively, in lines 5,6, and 7. In lines 8 to 12 if the current LH angle does not match the previous LH angle, then
the first point and the angle of the current LH will be added to the PointChangeList of GH and then continue with
the next LH. Otherwise continue with next LH. Finally the end point of the GH (GH.EP) will be the last point of
the last LH in the list (line 14).

5. TRAJECTORY DESCRIPTION

The end user will have the summarized GH as a set of points (<x, y, time> in 3–dimensional location-time), and the
objective is to represent the trajectory of the moving object at the end user.

A trajectory can be represented by a sequence of connected segments each of which joins two consecutive reported
points: i.e. the start point of the reported summarized GH is connected by line segment to the first point in the
PointChangeList, and the first point in the PointChangeList is connected by line segment to the next point till the last
point in the PointChangeList, which is connected with the end point of the reported summarized GH.

To produce these segments, one way is to use the interpolation schemes (Line Based Models). These schemes create
trajectories that have angles at reported locations which do not represent well the smooth trajectories of moving objects.

The second representation used is the curve-based trajectory representation model using Catmull–Rom spline [27]
which provides much more accurate trajectories than line-based models when we have the same amount of data. One of
the features of using Catmull–Rom spline is that the specified curve will pass through all of the control points and this is
not true of all types of splines.

 In the curve-based trajectory representation model, we represent the trajectory by a sequence of curve segments,
rather than line segments, each of which connects two consecutive points, where as most natural moving objects, such as
airplanes, vessels, and vehicles, draw a smooth trajectory with no angles.

The parametric form of a third-order polynomial to obtain a spline is given by the following equation.

P(t)= a0+a1 t+a2 t2+a3 t3
 (2)

where a0, a1, a2, and a3 are constant coefficients. Theses coefficients are determined from several equations that reflect
the properties of the cubic spline. To calculate a point on the Catmull–Rom spline curve, two points on either side of the
desired point are required. The point is specified by a value t that signifies the portion of the distance between the two
nearest control points.

Given a GH of four points p0 ,p1, p2, and p3. The Catmull–Rom spline in matrix form will be (for point q on the
curve at time t):

0

1

2

3

1 3 3 1
2 5 4 13 2() 0 .5 1
1 0 1 0

0 2 0 0

p
p

q t t t t
p
p

− − ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− −⎡ ⎤ ⎢ ⎥⎢ ⎥= ∗ ⋅⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥−
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 (3)

This becomes: q(t) = 0.5 * ((-p0 + 3*p1 -3*p2 + p3)*t3

 + (2*p0 -5*p1 + 4*p2 – p3)*t2 + (-p0+p2)* t + 2*p1).

 t takes values between 0 and 1, and the curve passes through p1 at t = 0 and p2 at t = 1. To do more than two
points, we can step through the array of points using the previous point, the current point, and the next two points as the
four points for the spline. For each segment, we can draw a curve for 0 < t < 1. This curve will be between the current
point and the next point.

6. EXAMPLE SCENARIO

In this section, we provide a simple example with a step by step explanation to describe our algorithm. Assume that
we have a random sensor network as shown in Figure 3. The arrows show how the object goes thought the network. In the first
phase, data is collected and each sensor arranges its data according to their timestamps.

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 309

Figure 3. Random Sensor Network

We will limit our description to CH1 and its cluster members. The CM1 has the points p1, p2, , p3 , p4 , with angle
56.4°, and p5 , p6 , p7 , with angle 0°, CM2 has the points p8 , p9, p10 , p11, p12, with angle 0°, and CM3 has the points
p14, p15, p16 , p17, p18 , p19, p20 with angle 290°. According to our algorithm we will have LH1= < p1, p4, 56.4° >, LH2= <
p4, p7, 0° > at CM1 , LH3= <p8, p12, 0° > at CM2,, and LH4 = < p14, p20 , 290° > at CM3 as shown in Figure 4. Figure 5
shows the created GH component at CH1 (GH1).

 Figure 4. LHs at CM1 Figure 5. GH1 at CH1

From Figure 5. the start point of GH1 is p1, and the end point is p20. The two points < p4 , 0° >, and < p14, 290° >
will be added to the PointChangeList of GH1. The next step is to send the formed GH1 at CH1 to the next suitable cluster
head under the criteria we mentioned before. CH1 will choose GW1 as the nearest GW to GH1.EP. But if an error
occurred and CH1 selected GW2 simply, GW2 will response back with no event, since CH3 has no event. CH1 will mark
GW2 as selected before and select GW1. CH2 responses back by yes confirmation and it is ready to receive the GH
component from CH1. CH2 merges GH1 and GH2 as shown in Figure 7, the result of merging the GHs in Figures 5 and 6.
CH2 will select GW3 and send query to CH4. CH4 responses back by yes confirmation. Finally, CH4 updates its GH4 by
merging it with the received GH2. The end user will receive the characteristic of the trajectory curve from the received
GH.

 Figure 6. GH2 at CH2 Figure 7. The updated GH2 at CH2

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 310

7. COMPLEXITY ANALYSIS

In this section, we present the complexity analysis in terms of number of exchanged messages between the nodes in the
network. If we assume that:

• k is the number of cluster heads,

• g is the number of gateways,

• c is the number of cluster members.

7.1. Local Computation Cost

Each node in the system analyzes the collected data to extract the local patterns, since the extraction of the local
patterns or forming the LH occurs locally, therefore the number of exchanged messages for this step will be zero.

7.2. Global Computation Cost

In the second stage of our algorithm,

• Each sensor node forwards its LHs to its CH, which takes communication cost equal to the number of cluster
members at each cluster that detects the event, i.e., the number of messages will be at most g + c.

• Each cluster head in the system analyzes the collected LHs to form its GH. Since the forming of the GH occurs
locally, therefore the number of exchanged messages for this step will be zero.

• Each CH searches in its list of database for the GW, that has minimum distance from the last point in its GH. To
reduce the amount of useless data traffic through the network and so the consumed energy in transmitting useless
data we use a yes/no query before sending any data that contains the GH. Where a yes/no message requires only one
bit of data size, while the GH component message requires many bits of data size. Here we consider two cases:

• Best Case scenario, the best case will be occurred when each cluster head that has event, selects the correct
gateway that is in its event direction as the first selection to report its GH, in this case the number of messages
will be 2* k + k = 3*k (k yes/no messages , k responses for yes/no messages, and k messages for sending the GHs).
Therefore the total number of messages of the algorithm will be 3* k+ g + c = 2*k + n, where n is the total number
of sensor nodes.

• Worst Case scenario, the worst case will occur when each cluster head selects all of its gateways before selecting
the correct one to report its GH. In each selection, every CH sends yes/no query to the selected GW, and receiving
response for yes/no query, and after selecting the desired GW, only one message contains the GH component will be
sent, i.e. 2*g + k messages will be exchanged by all cluster heads. Therefore, the total number of messages of the
algorithm will be 2*g + k + g + c = 3*g + k + c= 2*g + n, where n is the total number of sensor nodes.

8. SIMULATION RESULTS

The simulation program is an event-driven simulator developed using Visual C#.Net. The simulation area is
configure as a square region where sensor nodes, varying in number from 100 to 400 in increments of 100, were
uniformly randomly distributed. The area of the square region varied with the number of sensors so as to keep the
average density of nodes, i.e. nodes per square area, constant. The sensor nodes communicate with each other by
broadcasting messages across channels which are assumed to be symmetric. The sensing range of the sensor nodes is set
to 20 m and can be tuned in the program. The communication range of each sensor node is set to approximately twice of
sensing range and that is to ensuring that two sensor nodes with overlapping sensing area are capable of communicating
directly with each other. In context of our simulations, all the sensors in the network have the same characteristics, can
act as CHs or GWs, and capable of storing data and performing computations on this stored data.

For clustering and gateway formation in our simulation, each node performs neighbor discovery by exchanging
advertisements. It then waits for a time inversely proportional to its neighbor density and energy, before declaring itself
as a leader (cluster head). Each cluster head sends out declaration messages with a list of the potential members and
waits for some time to hear from them. The nodes that receive this declaration give up the election process and join the
cluster by sending confirmation to the cluster head. The next step in the creation of a connected network is the formation
of gateways between various stand alone clusters. Gateway selection is made conditional to the availability of an
appropriate schedule for communication between the two clusters. The clusters go either in wait mode or search mode.
During the search mode, the cluster head, CHi requests all its non-gateway members to search for neighboring cluster

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 311

heads. Each cluster member sends periodic broadcast messages in the search mode to discover a gateway. On being
contacted by a neighboring cluster head CHj (in wait mode), it confirms its gateway status to CHj, and notifies its parent
CHi about the link formed between itself and CHj. During the wait mode, CHj waits to hear from cluster members in
search mode. Upon listening to a broadcast from CM, CHj checks if it does not already have a gateway to the cluster
CHi. If CHj does not have such a gateway then add CHi to its neighbor list and CM becomes a gateway node between
CHi and CHj [18]. The output of the algorithms for discovering the nonlinear trajectory or the global patterns of a
moving object is shown in Figure 9 and Figure 10 with Figure 8 shows the actual trajectory of moving object through
the network of 300 nodes that are capable of collecting and recording approximate coordinate information about the
moving object.

 Figure 8. The actual trajectory of moving object approach

The main points of the global summarized GH are shown in both Figure 9 and Figure 10 by small red rectangles
which are the start point, the PointChangeList (P0, P1, P2), and the end point of the GH.

Figure 9 shows the estimated trajectory which obtained by our algorithm. This figure presents the trajectory
representation of the reported summarized GH as sent to the end user, using a curve-based model, i.e. Catmull-Rom
spline curve; the PointChangeList (P0, P1, P2) contains the control points which the Catmull–Rom spline curve passes
through to give a smooth representation for the object trajectory.

Figure 9. The Global Summarized GH Trajectory
using Curve Model Representation

Figure 10. The Global Summarized GH Trajectory
using Line Segment Representation

The thin red line in Figure 10 shows the representation of the estimated trajectory using line segment representation,
where the start point (SP) in the reported summarized GH is connected by line segment to the first point (P0) in the
PointChangeList, the first point in the PointChangeList is connected by line segment to the next point (P1), P1 is
connected by line segment to P2, and P2 is connected by line segment to the end point (EP) of the reported summarized
GH.

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 312

Simulations were separately conducted to analyze the communication complexity of our mechanism. The aim of
these simulations is to show the proper working of the algorithm and that the algorithm is scalable to varying number of
sensor nodes. At the simulation experiment using 100 of sensor nodes, the number of messages noted till the global
summarized GH is obtained. This was repeated for different scenarios of 200, 300 and 400 node networks. In each case
the number of exchanged messages for the different scenarios was computed. We noted that the best case will be
occurred when each cluster head that has event, selects the correct gateway that is in its event direction as the first
selection to report its GH, and the worst case will be occurred when each cluster head selects all of its gateways before
selecting the correct one to report its GH . Figure 11 shows the total number of exchanged messages in the worst and
best cases. The results were taken for different network sizes at which the event occurs in all of its clusters.

Our complexity analyses show that, there are two cases in our algorithm. The best case in which the total number of
exchanged messages approximately equals twice of the total number of cluster heads plus the total number of nodes in
the network, as shown in Figure 11, the number of exchanged messages is greater than the total number of sensor nodes.
The second one is the worst case in which, the number of exchanged messages equals twice of the total number of
gateways plus the total number of node in the network. It is obvious, when the size of the clusters in the network
becomes large, the total number of cluster heads decreases which leads to the total number of exchanged messages in the
network decreases to close to the total number of sensor nodes in the network. Our simulation results show that, the
performance of our algorithm is satisfactory overall and objective. In addition, our results prove that the algorithm
works similarly irrespective of the number of nodes in the network. In other words, the algorithm is scalable for
increasing the number of sensors.

0
100
200
300
400
500
600
700
800
900

100 200 300 400

No. of Nodes

N
o.

 o
f M

es
sa

ge
s E

xc
ha

ng
ed

In case of select all of the GWs
In case of first t ime select the desired GW

Figure 11. Total number of messages with increasing number of nodes

9. COMMENTS ON PRACTICAL MATTERS

Our algorithm described above works well in ideal situations. But in practical scenarios, wireless networks are prone
to message losses, node failures etc. due to various environmental disturbances, and hardware restrictions at the sensors.
This section considers such situations, and describes how these issues can be dealt with to enable proper working of the
algorithm.

• Node Failure. Node failure can occur due exhaustion of battery life at the sensors. Such a situation may occur
during exchanging LH messages or/and after the GH has been generated. In the former case, it would not be a
problem because the neighbors of the current node might have the target information over this area. In the latter
case, the CH needs to exchange its GH to its next CH through a GW so if the failure occurs in the GW this leads to
a problem in reporting the GH. The CH should infer the death of its gateway so that the CH can retrace a different
GW, which connect the next CH in this direction before sending its GH, i.e., the CH should make sure that its
cluster is in valid situation all the time and this could be by running a cluster maintenance algorithm.

• Message Loss / Collision. Message losses/collisions are very common in applications involving wireless
communication because of the frequent environmental disturbances in the channel. Such situations are very
difficult to detect at the sending sensor as it is not sure whether the message has reached its neighboring or
intended sensor. Thus, to enable detection of messages losses at sending sensor, an acknowledgment signal can
be used from the neighboring sensor to indicate proper reception of the message. If the sensor dose not receives

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 313

such an acknowledgement signal after a time limit, then it can retransmit the message to enable proper working of
the algorithm.

• Communication Reliability. In our setting, we assume that there is communication reliability in the network.

• Localization. We would like the sensors to determine their own positions after placement. This is known as
localization, and is typically achieved by having each sensor compute range measurements to its neighboring
sensors, then algorithmically embedding the graph formed by these ranges into a coordinate system. This
coordinate system is then used to perform location-dependent tasks such as geographic packet routing or target
tracking. Localization is often complicated by the difficulty of obtaining enough accurate pair-wise range
measurements between sensors. Inter-sensor ranges can be corrupted by noise or lost entirely due to occluded
line-of-sight. Thus, consistently accurate localization requires robustness in the face of missing or low quality
measurements. Nevertheless, localization is rarely if ever the purpose of a network. Sensor networks are typically
deployed to observe active phenomena in the environment, and require accurate localization as a means to that
end. As a result, there is pressure in localization research to achieve accuracy and robustness using as little
hardware as possible. Target tracking is one of the motivating localization-dependent applications of sensor
networks. In tracking applications, sensors jointly observe phenomena, which may be people or objects passing
through the network or physical effects such as bullet shock-waves or anomalous sounds. Once a phenomenon is
detected, the sensors collaborate to determine its spatial location. This estimate is reported to a computer or
person monitoring the network. In our algorithm, we consider that each sensor node is aware of its own location.
Where given the locations of the sensors and accurate range information to the target, it is straightforward to
determine the target's position based on the discovered sensor positions. Consequently, a localization error in our
case depends on the specialized localized algorithm which handle localization problem.

• Calibration. In an ideal world, sensors would arrive from the factory fully calibrated and able to begin taking
accurate measurements of their surroundings. However, this ideal situation is rarely achieved. For instance,
deployment conditions such as temperature affect the accuracy of ranging algorithms based on acoustic time-of-
flight by altering the speed of sound. The differences between sensors can also result in mis-calibrations that are
difficult to correct before deployment. Calibration in the field can therefore offer meaningful improvement in both
localization and target tracking accuracy. As with localization, there is considerable economic incentive to
develop auto-calibration algorithms that allow sensors to self-calibrate in the field without external intervention.

10. CONCLUSION

In this paper, we proposed a feasible solution for distributed tracking of mobile targets using random sensor networks; we
have demonstrated a new algorithm for discovering temporal patterns from a set of distributed databases containing temporal
data. The concept of maximizing the computations at the local sites and minimizing the exchange of information between
the nodes helps reduce the load on the overall network, this formed the crux of our algorithm. In our work, we considered
the problem of mining temporal data in distributed datasets. We worked with sensor nodes, which were capable of capturing
and storing approximate coordinate information about a moving object or a target object. These nodes were placed in a
random-like manner and our algorithm was used to predict the nonlinear trajectory of the moving object. We considered this
equivalent to mining of global spatiotemporal patterns from geographically distributed datasets. Since there is only one
database scanning required in the beginning, the complexity of our algorithm reduced.

Our simulation results show that the tracking performance is satisfactory overall, with particularly good performance at
higher tracking resolutions. In addition, this algorithm is specifically aimed at minimizing the energy consumption of the
network, a very important consideration for sensor networks.

REFERENCES

[1] M. Bhardwaj, T. Garnett, and A. P. Chandrakasan, "Upper Bounds on the Lifetime of Sensor Networks", Proceedings of
IEEE ICC'01, Helsinki, Finland, 2001, p. 785.

[2] C. Intanagonwiwat, R. Govindan, and D. Estrin., "Directed Diffusion: a Scalable and Robust Communication Paradigm for
Sensor Networks", Proceedings of ACM MobiCom'00. Boston, MA, USA, 2000, p. 56.

[3] A. Manjeshwar and D. P. Agrawal., "TEEN: A Routing Protocol for Enhanced Efficiency in Wireless Sensor Networks",
Proceedings of the IPDPS Workshop on Issues in Wireless Networks and Mobile Computing. San Francisco, CA, 2001, p.
2009.

Ahmed M. Khedr and Walid Osamy

The Arabian Journal for Science and Engineering, Volume 32, Number 2B October 2007 314

[4] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie,"Protocols for Self-Organization of a Wireless Sensor Network", IEEE
Personal Communication, 2000, p. 16.

[5] J. H. Chang and L. Tassiulas, "Energy Conserving Routing in Wireless Ad Hoc Networks", Proceedings of IEEE
INFOCOM'00, Tel Aviv, Israel, 2000, p. 22.

[6] S. Lindsey and C.S. Raghavendra, "Energy Efficient Broadcasting for Situation Awareness in Ad Hoc Networks",
Proceedings of ICPP'01, Valencia, Spain, 2001, p. 149.

[7] Ahmed M Khedr and Raj Bhatnagar, "A Decomposable Algorithm for Minimum Spanning Tree", Distributed
Computing–Lecture Notes in Computer Science. Heidelberg: Springer-Verlag, 2918(2003), p. 33.

[8] S. N. Slobodan and S. Shankar, "Distributed Gradient Estimation Using Random Sensor Networks", in
Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta,
GA, 2002.

[9] E. Amir, S. McCanne, and R. H. Katz,"An Active Service Framework and its Application to Real-Time Multimedia
Transcoding", in Proceedings of the ACM SIGCOMM conference, Vancouver, Canada, 1998, p. 178.

[10] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall and G. J. Minden, "A Survey of Active
Network Research", IEEE Communications Magazine, 1997, p. 80.

[11] R. Nagpal, H. Shrobe, and J. Bachrach, "Organizing a Global Coordinate System from Local Information on an
Amorphous Computer", Technical Report AI Memo No. 1666, MIT Artificial Intelligence Laboratory, 1999.

[12] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan, "Building Efficient
Wireless Sensor Networks with Low Level Naming", in Proc. ACM Symposium on Operating Systems Principles,
Chateau Lake Louise, Canada, 2001, p. 146.

[13] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocols for
Wireless Microsensor Networks", in Proceedings of the Hawaii International Conference on Systems Sciences,
Wailea Maui, HI, U.S.A; 2000, p. 4.

[14] J. S. Park, M. S. Chen and P. S. Yu "An Effective Hash-Based Algorithm for Mining Association Rules", in
Proceedings of the ACM/SIGMOD International Conference on Management of data, San Jose, CA, U.S.A.,
1995, p. 175.

[15] Rajeev Rastogi and Kyuseok Shim., "Mining Optimized Association Rules with Categorical and Numeric
Attributes", IEEE Transactions on Knowledge and Data Engineering, 14(2002), p.29.

[16] Rakesh Agrawal and John C. Shafer, "Parallel Mining of Association Rules", in IEEE Trans. on Knowledge and
Data Engineering, 1996.

[17] Bongki Moon, Ines Fernando Vega Lopez, and Vijaykumar Immanuel.,"Scalable Algorithms for Large-Scale Temporal
Aggregation", Technical Report TR 98-11. Tucson, AZ 85721, 1998.

[18] Chugh Shrvti and Dhrama P. Agrawal, "An Energy Efficient Collaborative Framework for Event
Notification and Data Aggregation in Wireless Sensor Networks", MSc thesis, University of Cincinnati,
Electrical, Engineering, and Computer Science, 2004.

 http://rave.ohiolink.edu/etdc/view?acc_num=ucin1077661982

[19] G. Pei, M. Gerla, X. Hong, and C. Chiang,"A Wireless Hierarchical Routing Protocol with Group Mobility",
in Proceeding of Wireless Communication and Networking Conference, 3(1999), p. 1538.

[20] Aram Galstyan, Bhaskar Krishnamachari, Kristina Lerman, and Sundeep Pattern, "Distributed Online Localization in
Sensor Networks Using a Moving Target", IPSN’04 , 2004.

[21] Kirill Mechitov and Sameer Sundresh, "Cooperative Tracking with Binary-Detection Sensor Networks,"
ACM Sensys' 03, 2003.

[22] Jaewon Shin, Lenidas Guibas and Feng Zhao, "A Distributed Algorithm for Managing Multi-target Identities
in Wireless Ad hoc Sensor Networks", 2nd workshop on Information Processing in Sensor Network
(IPSB'03), Palo Alto, California, U.S.A., 2003.

Ahmed M. Khedr and Walid Osamy

October 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2B 315

[23] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao., "Distributed Group Management for Track Initiation and
Maintenance in Target Localization Applications", in Proc. 2nd Workshop on Information Processing in
Sensor Networks (IPSN), Palo Alto, CA, April 2003, Lecture Notes in Computer Science (LNCS 2634),
Springer-Verlag Heidelberg, pp. 113–128.

[24] Qing Fang, Feng Zhao, and Leonidas Guibas, "Counting Targets: Building and Managing Aggregates in
Wireless Sensor Networks", Palo Alto Research Center (PARC) Technical Report, 2002.

[25] Javed Aslem, Zack Butler, Florin Constantin, Valentino Crespi, George Cybenko, and Daniela Rus, " Tracking a
Moving Object with a Binary Sensor Network", ACM Sensys 03 , 2003.

[26] Chin-Lung Yang, Saurabh Bagchi, and William J. Chappell, "Location Tracking with Directional Antennas in Wireless
Sensor Networks", IEEE MTT-S International Microwave Symposium (IMS 2005), Long Beach, California, U.S.A., June
11–17, 2005.

[27] Yu. Byunggu, Ho Kim Seon, Bailery Thomas, and Gamboa Ruben, "Curve-Based Representation of Moving Object
Trajectories", Proc. Internal Database Engineering and Applications Symposium (IDEAS'04), 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

