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  :الخلاصـة

مزودة بوصѧلة   شبكة المستشعرات اللاسلكية على العديد من الوحدات ذات الطاقة المنخفضة و ال        تحتوي
وقѧد تѧم   .  فѧي العديѧد مѧن التطبيقѧات    مهاااسѧتخد ن تلك المستشعرات يمكن إ للاتصال فيما بينها ، حيث   لكيةلاس

لѧى  إ و تقѧسيمها بѧشكل مѧا        في هذا البحث توزيع المستشعرات بشكل عشوائي علѧى المنطقѧة المѧراد مراقبتهѧا              
 من تلك المستѧشعرات علѧى بيانѧات مكانيѧة           مجموعات لتعمل آقواعد بيانات متفرقة، حيث تحتوي آل واحدة        

م بنѧاء خѧواريزم يعمѧل علѧى توجيѧه و إدارة الѧشبكة لتتبѧع                 تѧ  بعѧد ذلѧك     و. متحرك داخѧل المنطقѧة    الجسم  العن    
  .مسار حرآة أي جسم يمر خلال الشبكة

 يتمثل الهدف الأساسي من البحث فѧي جعѧل آѧل مستѧشعر مѧن المستѧشعرات يقѧوم باسѧتخلاص البيانѧات                       
 يتم اآتشاف الشكل العام لمسار حرآة الجѧسم سѧواء            و من تلك البيانات المستخلصة محلياً      ،لالة محلياً ذات الد 

ѧѧه خطيѧѧسار حرآتѧѧان مѧѧل   اًآѧѧين آѧѧة بѧѧائل المتبادلѧѧدد الرسѧѧون عѧѧار أن يكѧѧي الاعتبѧѧذ فѧѧع الأخѧѧي مѧѧر خطѧѧأو غي 
  . بشكل عام داخل الشبكة و ذلك لتوفير الطاقة المستهلكة داخل آل مستشعر أو،مستشعر و آخر أقل ما يمكن

  . بعضاًالمستشعرات و بعضهاعدد الرسائل المتبادلة بين  الخواريزم بناء على تحليلو في النهاية تم 
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ABSTRACT 

Wireless sensor networks consist of a large number of low power devices 
equipped with RF links for communication that have numerous military, civil, and 
environmental monitoring applications. The energy constraints due to limited battery 
power present several design challenges. We have considered a random sensor 
network , where the entire network of these sensors acts as a set of distributed 
datasets. Each of these sensors has its local temporal dataset along with spatial data 
and the geographical coordinates of a given object or target. In this paper, a cluster 
based algorithm is proposed for managing and coordinating a sensor network for 
tracking moving targets by mining global temporal patterns from these datasets and 
results in the discovery of nonlinear trajectories of moving objects under supervision. 
The main objective here is to perform in-network aggregation between the data 
contained in the various datasets to discover global spatio-temporal patterns; the main 
constraint is that there should be minimal communication among the participating 
nodes. We present the algorithm and analyze it in terms of the communication costs. 

Key words: wireless sensor networks, in-network aggregation, spatio-temporal 
patterns, distributed datasets, data mining. 
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TRACKING MOBILE TARGETS USING SENSOR NETWORKS 
 

1.     INTRODUCTION 

Sensor networks are related to wireless ad hoc networks, which are self-organizing systems consisting of hosts that do not 
rely on the presence of any fixed network infrastructure. After deployment, the wireless sensors self-configure to gather 
acoustic, magnetic, or seismic information and send the information to a cluster head or a base station; here end-users can 
retrieve the data. Important messages (e.g., an intruder detected by a sensor) can be broadcast to all nodes. Sensor 
networks are characterized by sheer numbers of nodes, data-centric applications, and constrained resources (bandwidth and 
energy). 

Sensor networks are an important area of applications, where each sensor collects data in its vicinity, and within its 
interest, to determine global patterns in a geographically distributed collection of sensors. In this paper, we present a 
methodology for mining geographically distributed datasets for spatio–temporal patterns.  

In our work, we assume a cluster based architecture for the sensor nodes that are randomly spread in a region to be 
supervised. They are capable of capturing and storing data. Our main aim is to perform data mining using our algorithm 
on the data stored in these sensor nodes. Data mining in sensor networks has a host of real time applications that can yield 
very useful, and profitable, results. For example, the following questions can be answered by implementing Data Mining 
techniques on the vast data available to us from a set of distributed databases in a state. Is there a pattern of increasing 
crime rate in the different counties of the state? How is this pattern spreading over the state and in which direction? 
Which were the most affected areas in the state by Hurricane Isabel? Which areas are most likely to be affected by a 
power outage?  

For the purpose of our paper, we refer to sensor networks as a set of geographically distributed stand alone sensors, 
that are spread over a region, and are capable of sensing predefined parameters such as temperature, motion, and geographic 
coordinates of objects. Every sensor is capable of collecting information in its vicinity and exchanging it to its Cluster Head. 
We assume that the sensors we work with are capable of running self-decomposable algorithms that extract useful 
information from the data stored in the sensors. Upon collection of data, the main interest to us is to determine global 
patterns from these sensors. Mobility of the sensors is dependent on the application and its use. We have restricted our 
work in this paper to stationary sensors. 

2.    RELATED RESEARCH 

There are many technical challenges associated with sensor networks,  such as self-organizing algorithms, energy-efficient 
routing protocols, data analysis/mining technology and network lifetime improvements [1–4].  The source of energy for 
a wireless sensor is most often an attached battery. The power in sensor nodes can be used up simply by 
computations and transmissions. Furthermore, it is infeasible to replace thousands of nodes in hostile or remote 
regions.  Therefore, conserving energy so as to prolong the network lifetime is becoming one of the key challenges for 
such power constrained networks.  Recent research has addressed this topic, for example [5, 6].  

One of the most important areas where the advantages of sensor networks can be exploited is for tracking mobile targets. 
Scenarios where such network may be deployed can be both military (tracking enemy vehicles, detecting illegal border 
crossings), and civilian (tracking the movement of wild animals in wildlife preserves). Typically, for accuracy, two or more 
sensors are simultaneously required for tracking a single target, leading to coordination issues. Additionally, given the 
requirements to minimize the power consumption due to communication or other factors, we would like to select the bare 
essential number of sensors dedicated for the task, while all other sensors should preferably be in the hibernation or off state. 
In order to simultaneously satisfy such requirements as power saving and improving overall efficiency, we need large scale 
coordination and other management operations. These tasks become even more challenging when one considers the 
random mobility of the targets and the resulting need to coordinate the assignment of the sensors best suited for 
tracking the target as a function of time. In this paper, we propose an algorithm for managing and coordinating a 
sensor network for tracking moving targets. 

The problem of tracking targets with sensor networks has received attention from various angles.  In [20], 
Galstyan et al.  proposed a distributed online algorithm in which sensor nodes use geometric constraints induced by both 
radio connectivity and sensing to reduce the uncertainty of their position. In that algorithm, sensor nodes use online 
observation of a moving target to simultaneously improve both the moving target and their own positions. A small 
fraction of reference nodes are pre-planned or GPS placements into the network. In [21], Kirill et al. presented a two-
level cooperative tracking algorithm using binary-detection sensors to track the object with more precision and accuracy.  
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In the first level phase, the local target position estimation is computed.  Initially, the target is estimated to equal to the 
position of the sensor node.  As more information from the other sensor nodes is available, the estimated position is 
recomputed as a weighted average of the sensor locations. Sensor nodes that lie closer to the path of the target receive 
more weight. These estimations are then aggregated to compute the path of the object, which produces a more precise 
estimate for the target location.  In the second level, a piecewise linear approximation of the path is computed using a 
line-fitting algorithm on the positions obtained in the first level. In [24], Fang et al. proposed a collaborative 
computation approach where they count the number of targets in the sensing terrain. They equate the computation of 
the number of targets to the computation of leader nodes in the network with maximum signal strength. They 
aggregate this information to get a final report of the total count. The work described in [22, 23, 25] provides similar 
distributed collaborative algorithms for target localization, classification, and tracking.   

The topographically addressed sensor nodes are similar to the way we have dealt with the placement of nodes in our 
work [7]. A distributed algorithm, which estimates the gradient of an environmental scalar variable such as temperature, 
intensity of light, atmospheric pressure, etc. using a random sensor network, is discussed by [8]. 

The work in [9, 10] has examined ways to provide in-network aggregation for the internet in a traditional way. The 
authors used the concepts of  routers and centralized node. But in the practical world of sensors and other similar devices, it 
is very expensive for a central node to communicate with all other nodes in the system. Hence a hop by hop network is built 
where each node can talk with its neighboring nodes [11]. In this aspect, the central idea of our paper is similar to [11], but 
we do not have the concept of  router or  centralized node. We assume that our algorithm would be primarily used for 
applications where the bandwidth is limited and the communication costs between nodes are very high, but the 
computation cost at the local nodes is very less. 

In [12], an algorithm has been designed to carry out in-network processing for data aggregation using a dense 
deployment of nodes. The main aim of our paper is similar to [12], where our proposed algorithm is used to compute data 
aggregations over a system of nodes by using in-network processing of the data stored in the nodes as in [12] but involving a 
temporal attribute, and also, the adopted methodology is different in that they assume two-way flow of data between 
nodes.   

In [13] an algorithm is designed that exploits the characteristics of ad hoc wireless sensor networks to discover position 
information of the sensor nodes even when they have been sprinkled all over the earth. Our work differs from [13], in that 
the sensor nodes in our work do not have to know the global knowledge of the topology of their physical locations, but they 
do need to know their global coordinates to start the in-network data analysis, and aggregation.  

Knowledge discovery and data mining are emerging fields, whose goals are to make sense out of large amounts of data 
collected, by discovering hitherto unknown patterns. Many interesting and efficient data mining algorithms have been 
proposed [14–16]. These database-oriented mining algorithms can be classified into two categories: concept generalization-
based discovery and discovery at the primitive concept level. Generalization of attribute values (or concepts) is the main 
idea in the former, whereas the latter discovers strong regularities or association rules from databases without concept 
generalization. 

There has not been much work in the area of mining temporal concepts. Most of the existing work is based on 
time series analysis of temporal sequences. Reference [17] discusses some of the challenges posed by the temporal data. There 
has been some work done in [11] in the field of parallel algorithms for temporal aggregation. In this paper, we discuss an 
algorithm which discovers temporal patterns among distributed datasets. 

The rest of the paper is organized as follows:  In the following section, we give an introduction to the basic concepts. A 
step by step outline of our algorithm is described in Section 4. We describe the trajectory of tracking in Section 5. In 
Section 6, we give an example scenario. Section 7 analyzes the complexity of our algorithm. In Section 8, we present our 
simulation results.  In Section 9, we discuss the practical matter.  We conclude our work in Section 10. 

3.    PROBLEM FORMULATION TERMS 

We consider sensor nodes that randomly spread across a geographical area and collaborate among themselves to establish a 
random sensor network. Also we assume a cluster based architecture for the sensor network. Each cluster has only one leader 
called Cluster Head (CH) and some nodes that can communicate with other neighbor clusters called Gateways (GW), and the 
remaining nodes in the cluster called Cluster Members (CM). Our development is in the context of temporal data being 
recorded by a number of sensors. We outline some of the ideas used in the development of our algorithm. The dataset used in 
our algorithm consists of the x and  y coordinates of the points at which the light event is sensed, along with the timestamp  
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[26].  We refer to the term point to a combined set of information about a moving object which includes x, y coordinates and 
the timestamp. Each sensor may have a number of such data points recorded in its local memory.  

3.1.    Local Hypothesis (LH) 

Forming of Local Hypotheses is the first step of our algorithm that is implemented in each of the sensor nodes. A 
Local Hypothesis is a set of three or more points, satisfying the following criteria. 

1. Taking sets of three points or more, they should lie on the same line in the same direction; 

2. The points in the LH should be in ascending timestamp manner. 

The angle between two points  p1, and p2 can be computed by the following equation: 

( ) ( ) ( )
( ) ( )⎥⎦
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⎢
⎣

⎡
−
−

=
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21 arctan,
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ppAngle                                   (1) 

We define the points p1, p2, p3, and p4 to be lying in the same direction if the angle between any pair of points is the same 
as the angle between the other pair, e.g., in Figure 1, the points p1, p2, p3, and p4 lie in the same direction. Hence they make 
a Local Hypothesis as is indicated by a rectangular box in Figure 1.  

LH is considered as a straight line that starts at the first point (FP), and ends with the last point (LP), with a specific 
angle of slope. For that, we consider the structure of LH as: LH = (FP, LP, angle).  In Figure 1, LH1 has p1 as the first 
point ,  and p4 as the last point .  

3.2.    Global Hypothesis (GH) 

Forming GH is the second step of our algorithm. A GH is considered as a structure that contains set of LHs. A GH 
is formed when LHs from different sensor nodes are merged in ascending manner according to their timestamps. We 
keep track of GH direction by updating the PointChangeList which includes the points at which the GH changes its 
direction. 

   
Figure 1. Example of LHs at one node              Figure 2. A GH Example at a cluster head 

The GH starts at the first point of the first attached LH and ends at the last point of the last attached LH. We define 
the length of GH to be the number of LHs considered during forming GH. We define the GH structure as GH = (Start 
Point (SP), <PointChangeList >, End Point (EP)). In Figure 2, the solid black line is the GH, and the small boxes 
represent the points at which the GH changes its direction. 

4.    ALGORITHMS OUTLINES 

There are two stages of our algorithm: the first stage will be executed at every sensor node in the system to generate 
the LHs (Local Computation), while the second stage will be executed at every cluster head that receives LHs from its 
cluster members to generate the GH (Global Computation). 

4.1. Algorithm Assumption 

We assume a cluster-based architecture for the sensor network and the choice was motivated by the need to ensure the 
sensor network's scalability and energy efficiency. A number of clustering algorithms have been proposed in the literature 
[18, 19]. In this paper, we are not concerned with details of clustering mechanisms.  Also, we assume that the cluster head 
knows the sensor identities and locations for all sensors belonging to its cluster. The assumptions about the sensor network 
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are the following: 

1. All sensors have the same characteristics; 

2. Sensors are randomly distributed across the whole sensing area; 

3. All sensors have the capability to capture the information of any moving object in their sensing  range. The 
information includes the approximate x, y coordinates, and the timestamp. 

No specific assumptions are made about the movement pattern of the target. However, we assume that the targets 
originate outside the sensing region and then move inside. Also, the aggregated data are reported to the end user. 

4.2. Local Computation 

Each node in the system collects all the required information about the moving target in its range, and form the LHs by 
executing the following procedure. 

1. Output: Set of Local Hypotheses 
2. Each node in the system, initially reads the data (say N points) from its database,  and sorts it  in ascending order 

according to their  timestamps. 
3. k = 1, i = 1      //  k  is the current LH number and  i = 1 is the current point number             
4. while(i  <  N) 

(a) Find the angles   Angle1 = angle(pi, pi+1)  and Angle2  =  angle(pi+1, pi+2 ) 
(b)     if ( Angle1 = Angle2 ) 

     i. LHk.FP= pi ; LHk.LP=pi+2 ; 
     LHk .angle = Angle2. ii. for j =i+3 to N 
    A. if angle( pj−1, pj) = angle( pi+1, pi+2 ) 
     •  LHk.LP = pj ; 
      B.  else 

• i =j, k=k+1 
• GOTO Step (4) 

       C.  End if 
iii. End for 

        (c) else  i =i +1 
       (d) End if 

5. End while 
6. End Local Computations 

Initially, each node arranges the recorded points in ascending manner according to their timestamps line 2. Take the 
first three points and find the angle between the first and the second point, and the angle between the second and the third  
point (line 4 (a)). In line 4 (b), if the computed angles in 4 (a) are the same, the LH is established by setting up the first 
point as the  FP of the LH, the third point as the LP of the LH and LH angle will be  the angle between the second 
and the third point. For further points that may be added to the current LH, we take the next point pj and determine its 
angle with the last added point to the current LH. If (pj-1, pj) angle equal to the LH angle, we update LH.LP to pj (line 4 
(A)). In line 4 B, if the first three points are not at the same angle, we skip the first point of the three points, and start from 
the second one (line 4 (c)). 

4.3.    Global Computation 

In the second stage of our algorithm, every cluster member sends its LHs to its cluster head to form the GH 
component, then each cluster head will find the next suitable cluster head to send its GH component for merging. The 
formed GH after merging includes the main points of the trajectory along current cluster head and its previous one in the 
network.  Also, in this stage CH communicates only with cluster heads that  are in the direction of the event through the 
selected GW. The length of the GH component increased from CH to next CH till we obtain the summarized GH that 
contains all the useful points about the moving object trajectory. Finally, the end user will receive the summarized GH  
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that includes  the start point, the end point, and the main points of the object trajectory through the network. 

In order to describe Global Computation step, we  first introduce the notation of "Event".  The Event occurs at CH,  if 
it receives any message contains an  LH  from its cluster members.  The default status for each CH is no Event at CH 
(Event= false).  

We now describe how Global Computation step is executed at every cluster head CHi. After receiving  the first LH, 
the Event is set to true then CHi waits a period of time to receive any more LH messages. After the time has expired a 
sequence of tasks in the following order are carried out at every cluster head: 

• Execute GenerateGH procedure to generate your GH component, 

• Search for the GW which has minimum distance from the last point in your GH component, 

• If  the received message contains  GH component ,  merge the received GH  into  your GH, 

• Report the GH components  to the next CH  (CHi+1), which  has true  Event  or  to the end user, 

• Reply to query message that asks for Event status. 

After receiving LHs, CHi executes the GenerateGH procedure to generate its GH component, and CHi  searches in its 
database for the GW which has minimum distance from the last point in its GH component. Then CHi communicates 
with the selected GW, and sends through it a query  asking  the next CH (CHi+1 ) for Event and waits for response.  If  no 
response back or no Event message, CHi marks the selected GW as already selected before and repeats searching for GW.  
If CHi+1 responses back that Event occurs in its direction, CHi will send its GH component to CHi+1 through the selected 
GW. However, if CHi could not find any GW (i.e. the object moves out from the network), in this case, CHi has 
responsibility to report the GH to the end user. 

If  CHi  receives a message from different CH contains the GH component,  CHi  will merge the received GH with its 
GH component as follows: Initially CHi checks if GHi−1.EP timestamp (the received GH component) is less than GHi.EP 
timestamp (the current GH component of CHi ), the new GHi starts at the start point of GHi−1 (GHi−1.SP) and ends at 
the end point of GHi (GHi.EP), and the new PointChangeList (GHi.PointChangeList) will be the union of the two sets 
GHi−1.PointChangeList, and GHi.PointChangeList. Finally, if CHi receives any query message, it will response back 
by yes if there is Event otherwise, by no. 

4.3.1.     Procedure GenerateGH 

This procedure generates GH from a list of LHs. 

1.     Input: List of LHs 

2.    Output: GH 

3.     Arrange the received LHs in ascending manner according to their timestamps. 

4.     set i = 1,    //  i is the current LH number 

5.     GH.PointChangeList = Φ 

6.     GH.SP=LH1.FP, 

7.      angle = LH1.angle. 

8.     for every LHi in the arranged LHs list (i > 1) 

9. if ( angle ≠ LHi.angle ) 

10. GH.PointChangeList = ∪ >< angleLHFPLHangeList GH.PointCh ii .,.   

11. angle = LHi.angle 

12. end if 

13. end for 

14. GH.EP = LHi.LP 

15. End GenerateGH procedure 
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In line 3, the LHs will be arranged in ascending manner according to their timestamps. The PointChangeList, 
the start point (GH.SP), and the angle of GH will be initialized to Φ, the first point of LH1, and LH1.angle 
respectively, in lines 5,6, and 7. In lines 8 to 12 if the current LH angle does not match the previous LH angle, then 
the first point and the angle of the current LH will be added to the PointChangeList of GH and then continue with 
the next LH. Otherwise continue with next LH. Finally the end point of the GH (GH.EP) will be the last point of 
the last LH in the list (line 14). 

5.    TRAJECTORY DESCRIPTION 

The end user will have the summarized GH as a set of points (<x, y, time> in 3–dimensional location-time), and the 
objective is to represent the trajectory of the moving object at the end user.   

A trajectory can be represented by a sequence of connected segments each of which joins two consecutive reported 
points: i.e. the start point of the reported summarized GH is connected by line segment to the first point in the 
PointChangeList, and the first point in the PointChangeList  is connected by line segment to the next point till the last 
point in the PointChangeList,  which is connected with the end point of the reported summarized GH. 

To produce these segments, one way is to use the interpolation schemes (Line Based Models). These schemes create 
trajectories that have angles at reported locations which do not represent well the smooth trajectories of moving objects.  

The second representation used is the curve-based trajectory representation model using Catmull–Rom spline [27] 
which provides much more accurate trajectories than line-based models when we have the same amount of data.  One of 
the features of using Catmull–Rom spline is that the specified curve will pass through all of the control points and this is 
not true of all types of splines. 

 In the curve-based trajectory representation model, we represent the trajectory by a sequence of curve segments, 
rather than line segments, each of which connects two consecutive points, where as most natural moving objects, such as 
airplanes, vessels, and vehicles, draw a smooth trajectory with no angles.  

The parametric form of a third-order polynomial to obtain a spline is given by the following equation. 

P(t)= a0+a1 t+a2 t2+a3 t3
                                                        (2) 

where a0, a1, a2, and a3 are constant coefficients. Theses coefficients are determined from several equations that reflect 
the properties of the cubic spline.  To calculate a point on the Catmull–Rom spline curve, two points on either side of the 
desired point are required. The point is specified by a value t that signifies the portion of the distance between the two 
nearest control points. 

Given a GH of four points p0  ,p1,  p2, and  p3. The Catmull–Rom spline in matrix form will be (for  point q on the 
curve at  time t): 
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This becomes:     q(t) = 0.5 * (  (-p0 + 3*p1 -3*p2 + p3)*t3 

                                          + (2*p0 -5*p1 + 4*p2 – p3)*t2 + (-p0+p2)* t   + 2*p1). 

 t  takes values  between 0 and 1, and  the curve passes through  p1 at t = 0 and   p2 at t = 1. To do more than two 
points, we can step through the array of points using the previous point, the current point, and the next two points as the 
four points for the spline. For each segment, we can draw a curve for 0 < t < 1. This curve will be between the current 
point and the next point. 

6.    EXAMPLE SCENARIO 

In this section, we provide a simple example with a step by step explanation to describe our algorithm. Assume that 
we have a random sensor network as shown in Figure 3. The arrows show how the object goes thought the network. In the first 
phase, data is collected and each sensor arranges its data according to their timestamps. 
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Figure 3. Random Sensor Network 

We will limit our description to CH1 and its cluster members.  The CM1 has  the points p1, p2, , p3 ,  p4 , with angle  
56.4°, and  p5 , p6 , p7 , with angle  0°,  CM2  has the points   p8 , p9, p10 , p11,  p12, with angle  0°, and  CM3 has the points   
p14,  p15,  p16 , p17, p18 , p19, p20  with angle  290°. According to our algorithm we will have  LH1= < p1, p4, 56.4° >, LH2= < 
p4, p7, 0° > at CM1   , LH3= <p8, p12, 0° >  at  CM2,,  and  LH4 = < p14, p20 , 290° >  at CM3 as shown in  Figure 4.   Figure 5 
shows the created GH component at CH1 (GH1).  

  
                         Figure 4. LHs at CM1 Figure 5. GH1 at CH1  

From Figure 5. the start point of GH1 is  p1, and the end point is  p20.  The two points < p4 , 0° >, and < p14, 290° > 
will be added to the PointChangeList of GH1. The next step is to send the formed GH1 at CH1 to the next suitable cluster 
head under the criteria we mentioned before. CH1 will choose GW1 as the nearest GW to GH1.EP.  But if an error 
occurred and CH1 selected GW2 simply, GW2 will response back with no event, since CH3 has no event.  CH1 will mark 
GW2 as selected before and select GW1.  CH2  responses back by yes confirmation  and it is ready to receive the GH 
component from CH1.  CH2 merges GH1 and GH2  as shown in Figure 7, the result of merging the GHs in Figures 5 and 6. 
CH2 will select GW3 and send query to CH4. CH4 responses back by yes confirmation. Finally, CH4 updates its GH4 by 
merging it with the received GH2. The end user will receive the characteristic of the trajectory curve from the received 
GH.                                         

  
        Figure 6. GH2  at  CH2 Figure 7. The updated GH2   at CH2 
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7.   COMPLEXITY ANALYSIS 

In this section, we present the complexity analysis in terms of number of exchanged messages between the nodes in the 
network. If we assume that: 

• k   is the  number of cluster heads, 

• g   is the  number of gateways, 

• c    is the  number of cluster members. 

7.1.    Local Computation Cost 

Each node in the system analyzes the collected data to extract the local patterns, since the extraction of the local 
patterns or forming the LH occurs locally, therefore the number of exchanged messages for this step will be zero. 

7.2.    Global Computation Cost 

In the second stage of our algorithm,   

• Each sensor node forwards its LHs to its CH, which takes communication cost equal to the number of cluster 
members at each cluster that detects the event,  i.e., the number of messages  will be at most   g + c.  

• Each cluster head  in the system analyzes the collected LHs to form its GH. Since the forming of the GH occurs 
locally, therefore the number of exchanged messages for this step will be zero. 

•  Each CH searches in its list of database for the GW, that has minimum distance from the last point in its GH. To 
reduce the amount of useless data traffic through the network and so the consumed energy in transmitting useless 
data we use a yes/no query before sending any data that contains the GH. Where a yes/no message requires only one 
bit of data size, while the GH component message requires many bits of data size. Here we consider two cases:  

• Best Case scenario, the best case will be occurred when each cluster head that has event, selects the correct 
gateway that is in its event direction  as the first selection  to report its GH, in this case the number of messages 
will be  2* k + k = 3*k (k  yes/no messages , k responses for yes/no messages, and k messages for sending the GHs).  
Therefore the total number of messages of the algorithm will be   3* k+ g + c = 2*k + n, where n is the total number 
of sensor nodes. 

•  Worst Case scenario, the worst case will occur when each cluster head selects all of its gateways before selecting 
the correct one to report its GH.  In each selection, every CH sends yes/no query to the selected GW, and receiving 
response for yes/no query, and after selecting the desired GW, only one message contains the GH component will be 
sent, i.e.  2*g + k  messages will be exchanged by all cluster heads. Therefore, the total number of messages of  the 
algorithm will be 2*g + k + g + c = 3*g + k + c= 2*g + n, where n is the total number of sensor nodes. 

8.  SIMULATION RESULTS 

The simulation program is an event-driven simulator developed using Visual C#.Net. The simulation area is 
configure as a square region where sensor nodes, varying in number from 100 to 400 in increments of 100, were 
uniformly randomly distributed. The area of the square region varied with the number of sensors so as to keep the 
average density of nodes, i.e. nodes per square area, constant. The sensor nodes communicate with each other by 
broadcasting messages across channels which are assumed to be symmetric. The sensing range of the sensor nodes is set 
to 20 m and can be tuned in the program. The communication range of each sensor node is set to approximately twice of 
sensing range and that is to ensuring that two sensor nodes with overlapping sensing area are capable of communicating 
directly with each other. In context of our simulations, all the sensors in the network have the same characteristics, can 
act as CHs or GWs, and capable of storing data and performing computations on this stored data. 

For clustering and gateway formation in our simulation, each node performs neighbor discovery by exchanging 
advertisements. It then waits for a time inversely proportional to its neighbor density and energy, before declaring itself 
as a leader (cluster head).  Each cluster head sends out declaration messages with a list of the potential members and 
waits for some time to hear from them. The nodes that receive this declaration give up the election process and join the 
cluster by sending confirmation to the cluster head. The next step in the creation of a connected network is the formation 
of gateways between various stand alone clusters. Gateway selection is made conditional to the availability of an 
appropriate schedule for communication between the two clusters. The clusters go either in wait mode or search mode. 
During the search mode, the cluster head, CHi requests all its non-gateway members to search for neighboring cluster 
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heads. Each cluster member sends periodic broadcast messages in the search mode to discover a gateway. On being 
contacted by a neighboring cluster head CHj (in wait mode), it confirms its gateway status to CHj, and notifies its parent 
CHi  about the link formed between itself and CHj. During the wait mode, CHj waits to hear from cluster members in 
search mode. Upon listening to a broadcast from CM, CHj  checks if it does not already have a gateway to the cluster 
CHi. If CHj does not have such a gateway  then  add CHi to its neighbor list and  CM becomes a gateway  node between 
CHi  and CHj      [18]. The output of the algorithms for discovering the nonlinear trajectory or the global patterns of a 
moving object is shown in Figure 9 and Figure 10 with Figure 8 shows the actual trajectory of moving object  through 
the network of  300 nodes that are capable of collecting and recording approximate coordinate information about the 
moving object. 

 

 
 Figure 8. The actual trajectory of moving object approach 

The main points of the global summarized GH are shown in both Figure 9 and Figure 10 by small red rectangles 
which are the start point, the PointChangeList (P0, P1, P2), and the end point of the GH. 

Figure 9 shows the estimated trajectory which obtained by our algorithm. This figure presents the trajectory 
representation of the reported summarized GH as sent to the end user, using a curve-based model, i.e. Catmull-Rom 
spline curve; the PointChangeList (P0, P1, P2)  contains the control points which the Catmull–Rom spline curve passes  
through to give a smooth representation for the object trajectory. 

 

  

Figure 9. The Global Summarized GH Trajectory 
using Curve Model Representation 

Figure 10. The Global Summarized GH Trajectory 
using  Line Segment Representation 

The thin red line in Figure 10 shows the representation of the estimated trajectory using line segment representation, 
where the start point (SP) in the reported summarized GH is connected by line segment to the first point (P0) in the 
PointChangeList, the first point in the PointChangeList is connected by line segment to the next point (P1), P1 is 
connected by line segment to P2, and P2 is connected by line segment to the end point (EP) of  the reported summarized 
GH. 
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Simulations were separately conducted to analyze the communication complexity of our mechanism. The aim of 
these simulations is to show the proper working of the algorithm and that the algorithm is scalable to varying number of 
sensor nodes. At the simulation experiment using 100 of sensor nodes, the number of messages noted till the global 
summarized GH is obtained. This was repeated for different scenarios of 200, 300 and 400 node networks. In each case 
the number of exchanged messages for the different scenarios was computed. We noted that the best case will be 
occurred when each cluster head that has event, selects the correct gateway that is in its event direction as the first 
selection to report its GH,  and  the worst case will be occurred  when each cluster head selects all of its gateways before 
selecting the correct one  to report its GH .  Figure 11 shows the total number of exchanged messages in the worst and 
best cases. The results were taken for different network sizes at which the event occurs in all of its clusters. 

Our complexity analyses show that, there are two cases in our algorithm. The best case in which the total number of 
exchanged messages approximately equals twice of the total number of cluster heads plus the total number of nodes in 
the network, as shown in Figure 11, the number of exchanged messages is greater than the total number of sensor nodes. 
The second one is the worst case in which, the number of exchanged messages equals twice of the total number of 
gateways plus the total number of node in the network. It is obvious, when the size of the clusters in the network 
becomes large, the total number of cluster heads decreases which leads to the total number of exchanged messages in the 
network decreases to close to the total number of sensor nodes in the network. Our simulation results show that, the 
performance of our algorithm is satisfactory overall and objective.  In addition, our results prove that the algorithm 
works similarly irrespective of the number of nodes in the network. In other words, the algorithm is scalable for 
increasing the number of sensors. 
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Figure 11. Total number of messages with increasing number of nodes 

 

9.  COMMENTS ON PRACTICAL MATTERS 

Our algorithm described above works well in ideal situations. But in practical scenarios, wireless networks are prone 
to message losses, node failures etc. due to various environmental disturbances, and hardware restrictions at the sensors. 
This section considers such situations, and describes how these issues can be dealt with to enable proper working of the 
algorithm. 

• Node Failure.  Node failure can occur due exhaustion of battery life at the sensors. Such a situation may occur 
during exchanging LH messages or/and after the GH has been generated.  In the former case, it would not be a 
problem because the neighbors of the current node might have the target information over this area. In the latter 
case, the CH needs to exchange its GH to its next CH through a GW so if the failure occurs in the GW this leads to 
a problem in reporting the GH. The CH should infer the death of its gateway so that the CH can retrace a different 
GW, which connect the next CH in this direction before sending its GH, i.e., the CH should make sure that its 
cluster is in valid situation all the time and this could be by running a cluster maintenance algorithm.  

• Message Loss / Collision.  Message losses/collisions are very common in applications involving wireless 
communication because of the frequent environmental disturbances in the channel. Such situations are very 
difficult to detect at the sending sensor  as it is not sure whether the message has reached its neighboring or 
intended sensor.  Thus, to enable detection of messages losses at sending sensor, an acknowledgment signal can 
be used from the neighboring sensor to indicate proper reception of the message. If the sensor dose not receives 
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such an acknowledgement signal after a time limit, then it can retransmit the message to enable proper working of 
the algorithm. 

•  Communication Reliability.  In our setting, we assume that there is communication reliability in the network.  

• Localization. We would like the sensors to determine their own positions after placement. This is known as 
localization, and is typically achieved by having each sensor compute range measurements to its neighboring 
sensors, then algorithmically embedding the graph formed by these ranges into a coordinate system. This 
coordinate system is then used to perform location-dependent tasks such as geographic packet routing or target 
tracking. Localization is often complicated by the difficulty of obtaining enough accurate pair-wise range 
measurements between sensors. Inter-sensor ranges can be corrupted by noise or lost entirely due to occluded 
line-of-sight. Thus, consistently accurate localization requires robustness in the face of missing or low quality 
measurements. Nevertheless, localization is rarely if ever the purpose of a network. Sensor networks are typically 
deployed to observe active phenomena in the environment, and require accurate localization as a means to that 
end. As a result, there is pressure in localization research to achieve accuracy and robustness using as little 
hardware as possible. Target tracking is one of the motivating localization-dependent applications of sensor 
networks. In tracking applications, sensors jointly observe phenomena, which may be people or objects passing 
through the network or physical effects such as bullet shock-waves or anomalous sounds. Once a phenomenon is 
detected, the sensors collaborate to determine its spatial location. This estimate is reported to a computer or 
person monitoring the network.  In our algorithm, we consider that each sensor node is aware of its own location. 
Where given the locations of the sensors and accurate range information to the target, it is straightforward to 
determine the target's position based on the discovered sensor positions. Consequently, a localization error in our 
case depends on the specialized localized algorithm which handle localization problem. 

• Calibration. In an ideal world, sensors would arrive from the factory fully calibrated and able to begin taking 
accurate measurements of their surroundings. However, this ideal situation is rarely achieved. For instance, 
deployment conditions such as temperature affect the accuracy of ranging algorithms based on acoustic time-of-
flight by altering the speed of sound. The differences between sensors can also result in mis-calibrations that are 
difficult to correct before deployment. Calibration in the field can therefore offer meaningful improvement in both 
localization and target tracking accuracy. As with localization, there is considerable economic incentive to 
develop auto-calibration algorithms that allow sensors to self-calibrate in the field without external intervention. 

10.    CONCLUSION 

In this paper, we proposed a feasible solution for distributed tracking of mobile targets using random sensor networks; we 
have demonstrated a new algorithm for discovering temporal patterns from a set of distributed databases containing temporal 
data. The concept of maximizing the computations at the local sites and minimizing the exchange of information between 
the nodes helps reduce the load on the overall network, this formed the crux of our algorithm. In our work, we considered 
the problem of mining temporal data in distributed datasets. We worked with sensor nodes, which were capable of capturing 
and storing approximate coordinate information about a moving object or a target object. These nodes were placed in a 
random-like manner and our algorithm was used to predict the nonlinear trajectory of the moving object. We considered this 
equivalent to mining of global spatiotemporal patterns from geographically distributed datasets. Since there is only one 
database scanning required in the beginning, the complexity of our algorithm reduced. 

Our simulation results show that the tracking performance is satisfactory overall, with particularly good performance at 
higher tracking resolutions. In addition, this algorithm is specifically aimed at minimizing the energy consumption of the 
network, a very important consideration for sensor networks. 
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